Questions de cous $\mu_{e} = -\mu_{g} \frac{l}{h}$ $\mu_{g} = \frac{l_{g} l_{h}}{l_{m_{g}}}$ Enugie d'interaction $W = -\mu e \cdot B$ · densités de proba ρ Madialis $\rho(r) = |K_m \rho(r)|^2 et \rho(r) dr = |\rho(r) dr$ Ero 2 al differents temes de studire fine Wmv =) kume relativiste pour les orbite, basses m-1

car NI ~ X = 1

lim de prix en compte relativit

Wso => complege spin-orbite

du à - Its . B avec B = - 1 \overline{\text{Te} A \overline{\text{E}}}

m' magnitique
obspir de l'e
l'acque
morgan Wo => Terme de Darwin: l'approx non relation te condent à ul interaction non locale entre l'é-et le che consider du norque b) dot limit = order ? Tume DEM

Le calcul de la perturbation avec les fonctions d'onde $\psi_{nljm_J}(r, \theta, \varphi)$ obtenues dans l'exercice 11.3 conduit à un calcul de perturbation d'états non dégénérés et la correction relativiste est donnée par les éléments matriciels diagonaux de W_V . L'énergie potentielle est donnée par $V = -e^2/r$, d'où l'énergie de perturbation :

$$E_V^{(1)} = -\frac{1}{2m_e c^2} \int \psi_{nljm_J}^* (E^2 + 2E \frac{e^2}{r} + \frac{e^4}{r^2}) \, \psi_{nljm_J} r^2 \sin\theta \, d\theta \, d\varphi \, dr \tag{2}$$

Le calcul de ces intégrales fait intervenir les valeurs moyennes de 1/r et $1/r^2$ données par (7.3.47), à savoir :

$$\langle R^{-1} \rangle = \frac{1}{a_0 n^2} \quad ; \quad \langle R^{-2} \rangle = \frac{1}{a_0^2 n^3 (l + \frac{1}{2})}$$
 (3)

L'énergie de perturbation due à W_V est alors :

$$E_V^{(1)} = -\frac{|E_n|\alpha^2}{n} \left(\frac{2}{2l+1} - \frac{3}{4n}\right) \tag{4}$$

Les fonctions $\psi_{nljm_I}(r, \theta, \varphi)$ sont donc des fonctions propres de W_{SO} et, par suite, le calcul de perturbation au premier ordre se ramène au calcul des éléments matriciels diagonaux de W_{SO} déterminés sur les états propres de H. Les énergies de perturbation sont données par :

$$E_{SO}^{(1)} = \langle \psi_{nljm_J}(r, \theta, \varphi) | W_{SO} | \psi_{nljm_J}(r, \theta, \varphi) \rangle$$
 (5)

Les intégrales à calculer sont donc de la forme suivante, avec l'élément de volume donné par $dV = r^2 \sin \theta d\theta d\phi dr$:

$$\frac{e^2}{4m_e^2c^2}\int \frac{R_{nl}^2(r)}{r} dr \iint Z_{ljm_l}^*(\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2) Z_{ljm_l} \sin \theta d\theta d\varphi \qquad (6)$$

Puisque les fonctions Z_{ljm} , sont des fonctions propres de ${\bf J}^2$, ${\bf L}^2$ et ${\bf S}^2$, l'intégrale double en θ et φ vaut :

$$\hbar^2[j(j+1) - l(l+1) - s(s+1)] = \hbar^2[j(j+1) - l(l+1) - 3/4]$$
(7)

L'intégrale dépendant de r est la valeur moyenne de r^{-3} ; cette valeur est donnée par (7.3.47), pour $l \neq 0$, à savoir :

 $\langle R^{-3} \rangle = \frac{1}{a_0^3 n^3 l(l+1)(l+\frac{1}{2})} \tag{8}$

Posons $|E_n| = m_e e^4/2\hbar^2 n^2$; ce sont les valeurs absolues des niveaux d'énergie de l'hydrogène. La constante de strucure fine α s'écrit : $\alpha = e^2/\hbar c$. Les énergies de perturbation données par (5) s'écrivent, compte tenu de l'expression (4) de W_{SO} et des résultats (7) et (8), pour $l \neq 0$:

pour
$$j = l + \frac{1}{2}$$
: $E_{SO}^{(1)+} = \frac{|E_n| \alpha^2}{2n} \frac{1}{(l+1)(l+\frac{1}{2})}$ (9)

pour
$$j = l - \frac{1}{2}$$
: $E_{SO}^{(1)-} = -\frac{|E_n| \alpha^2}{2n} \frac{1}{l(l + \frac{1}{2})}$ (10)

Pour l=0, on a j=1/2 et l'expression (7) est égale à zéro ; l'énergie de perturbation est alors nulle.

d)

2. L'énergie totale de perturbation due à $W_{SO} + W_V$ s'obtient en additionnant les expressions (9) ou (10) de l'exercice 11.3 avec $E_V^{(1)}$. Si l'on remplace l par sa valeur en fonction de j, soit l = j + 1/2 ou l = j - 1/2, on obtient l'expression unique :

$$E_{n,j}^{(1)} = -\frac{|E_n|\alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right)$$
 (5)

Ero3

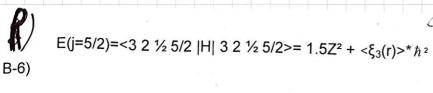
où j prend les valeurs $j=l\pm 1/2$. Le coefficient $|E_n|\alpha^2/n$ s'écrit encore m_e $c^2\alpha^4/2n^3$ en tenant compte de l'expression de $|E_n|=m_ec^2\alpha^2/2n^2$. On retrouve l'expression (11.3.7).

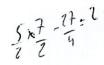
(1) $H_0 = EC + Ep = \frac{P^2}{2m} + V(x) = \frac{P^2}{2m} - \frac{Ze^2}{x}$; H_0 agit donc que sur la partie radiale de la fonction d'onde associée au nombre quantique principal n. (1 pt)

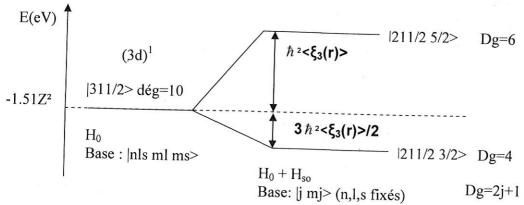
Il agit également sur la partie angulaire au travers de l'opérateur P (en coordonnées sphérique) donc également sur l et ces projections ml.

(0.5 pt) A-2) E_n=-13.6 Z²/n²=-13.6*Z²/3² ~ 1.5 Z² eV. (0.5 pt) Si l'on considère le moment cinétique et le spin de l'électron, les quantiques principaux sont nls et leurs projections ml, ms. |n,l,s,ml,ms> (1 pt)

Ici pour la configuration (3d)¹: n=3. l=2, s=1/2 donc -2<ml<2 et ms=1/2, -1/2, (1 pt) La base des (2s+1)(2l+1)=10 vecteurs propres associés est donc : -|3 2 ½ -2 ½> , |3 2 ½ -1 ½>, |3 2 ½ 0 ½>, |3 2 ½ 1 ½>,|3 2 ½ 2 ½> |3 2 ½ -2 -½> , |3 2 ½ -1 -½>, |3 2 ½ 0 -½>, |3 2 ½ 1 -½>,|3 2 ½ 2 -½> (0.5 pt)B - Problème - 10.5 pts B-1) $H=H_0+H_{so}=P^2/2mEZe^2/r+\xi_n(r)$ L.S $\xi_n(r)$ n'agit que sur la partie radiale i.e n et pas S ni L. (0.5 pt)(/ B-2) J est la somme des moments cinétiques et de spin de l'électron. $\vec{J} = \vec{L} + \vec{S}$ (1 pt) $J^2 = L^2 + S^2 + 2\vec{L}\cdot\vec{S}$ d'où : $H_{so} = (\xi_n(r)/2) (J^2-L^2-S^2)$ (0.5 pt) $\mathcal{C}/$ B-3) En fait, il est possible d'utiliser la base mais elle ne sera pas appropriée car ces vecteurs ne sont pas vecteurs propres de l'Hamiltonien Spin-Orbite. Pour décrire les états propres du système il est nécessaire d'introduire le nombre quantique J et ces projections mj. La nouvelle base est donc |nlsjm_j> eq. |j mj> car n,l et s sont fixés pour une configuration donnée. NB : ms et ml n'interviennent. (0.5 pt)| B-4| s=1/2, I=2 donc |I-s|<j<I+s donc j=3/2,5/2 (1 pt) Les projections de j sont comprissent entre -j<mj<j. (0.5 pt)Les vecteurs propres sont donc :2 y j=3/2 mj=-3/2,-1/2,1/2,3/2 : |3/2, {-3/2,-1/2,1/2,3/2}> et dég+4+2j+1 (0.5 pt)/ j=5/2 mj=-5/2,-3/2,-1/2,1/2,3/2,5/2 : |5/2,{-5/2,-3/2,-1/2,1/2,3/2,5/2}> (dég \notin 6) B-5) les éléments de matrice de H dans la base précédente s'écrivent : $<\!n'\!lsj'\!|H|nlsj\!>\!\not=<\!n'\!|H_0|n\!>\!\delta_{nn'}\!\!+\!<\!\xi_n(r)\!>\delta_{nn}\!\left(<\!lsj'\!|H_{ls}|lsj\!>\!$ lci pour la configuration (3d)¹, n=3, l=2, s=1/2 et j=3/2,5/2 d'où la matrice : $\left\langle 32\frac{1}{2}jH \middle| 32\frac{1}{2}j \right\rangle = 15Z^{2} + \frac{\left\langle \xi_{3}(r) \right\rangle}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (j(j+1) - \frac{27}{4}h^{2})$ Les éléments j ≠ j' sont nuls car {|lsj>} sont vecteurs propres de H_{so.} (2 pts) AN: $E(j=3/2)=<3 \ 2 \frac{1}{2} \frac{3}{2} |H| \ 3 \ 2 \frac{1}{2} \frac{3}{2}>= 1.5Z^2 - <\xi_3(r)>*3 \ \hbar^2/2$







Il y a donc levée partielle de dégénérescence.

(1.5 pts)

(0.5 pt)

----- Fin -----